What is the next step for our jobs in Information Technology?

Photo Credit: Unsplash.com Josh Harrison
Marsha and her sewing machine

Marsha* is my friend’s mom. She worked 30+ years in downtown Minneapolis as a tailor for an upscale department store, altering suits for its elite clientele. She was talented, had a pleasant smile, and was purely focused on bringing home a monthly paycheck for her family. But the demand for custom tailoring and alterations was shrinking, and after the department store chain was sold to another company, she was given the pink slip. Just like that, her life had turned upside down. She received no severance, had little savings, and redefining her career in early-50s was daunting.

Sound like a familiar story? We all know someone among our friends, family or neighbors who has gone through a similar experience. Election campaigns betting on nostalgia, the good old days, tend to put those seeking power in office. But there are things that government policies can’t bring back. Manufacturing jobs may have initially gone overseas because of global economic forces, but automation is now the primary threat to human skill. The jobs ‘coming back’ are no longer the same good old ones. New skills are now needed to manage and run automation systems in modern manufacturing plants.

We are starting to see our Marsha in Information Technology. The tech-workers from the dot.com generation were programmers, testers and administrators of IT infrastructure. Whether it was a complex control system that monitors patient’s vitals during surgery or a simple e-commerce, the IT worker’s life revolved around building and maintaining the infrastructure needed to run several pieces of software.

Cloud economics is the first factor we tend to blame for sinking IT jobs. While that may be true to some extent, automation is the real reason for the gradual sunset in traditional, infrastructure centric IT jobs. The world still need IT workers, but skills in demand are no longer based on infrastructure management (traditional system programmers and testers, system administrators, Storage/Network administrators, virtual machine administrators, backup system administrators etc.). So, it is time to reinvent our roles in the world of IT automation.

I spent my youth working in various roles on infrastructure-centric jobs. So many certifications on infrastructure management! I am thankful to where it took me. It helped pay the bills, support a family, and buy a house. But I constantly think about Marsha. Disruptions in technology jobs occur much faster than those in manufacturing. Staying on track to retirement requires constantly changing the tracks of professional life – whether it involves learning new skills or taking some risks.

Infrastructure administration had been fun. In those days, skills diversification meant getting certified on different infrastructure platforms. I had my share of certifications in Sun Solaris, IBM AIX, all things Veritas and VMware. It helped to stay relevant. Nowadays, even AWS is on a certification mission to generate new sets of architects; however, just like what had happened in manufacturing, the skillsets are ultimately centered around automation. So, the big question: are skills in infrastructure alone enough to take us to retirement? After-all, we work to live; we don’t live to work.

I don’t claim to have the answer to that question. I will share my views and decision influenced by thought leaders, both from academia while I was in business school and from those who had run rat races in Silicon Valley. If your current role is associated with IT infrastructure, my hope is that it will help a little in thinking about the next step in refreshing your IT role. Naturally, I will start with my favorite one: The Marsha managing Backup and Recovery infrastructure, I have known her for long time.

*Name altered and context modified to protect her privacy

Did Rubrik make Veeam’s Modern Data Protection a bit antiquated?

Veeam Antiquated?
Veeam Antiquated?

Modern Data Protection™ got a trademark from Veeam. No, I am not joking. It is true! Veeam started with a focused strategy. It will do nothing but VMware VM backups. Thankfully VMware had done most of the heavy lifting with vStorage APIs for Data Protection (VADP) so developing a VM-only backup solution was as simple as creating a software plugin for those APIs and developing a storage platform for keeping the VM copies. With a good marketing engine Veeam won the hearts of virtual machine administrators and it paid off.

As the opportunity to reap the benefits as a niche VM-only backup started to erode (intense competition, low barrier to entry on account of VADP), Veeam is attempting to re-invent its image by exploring broader use cases like physical systems protection, availability etc. Some of these efforts make it look like its investors are hoping for Microsoft to buy Veeam. The earlier wish to sell itself to VMware shattered when VMware adopted EMC Avamar’s storage to build its data protection solution.

Now Rubrik is coming to market and attacking the very heart of Veeam’s little playground while making Veeam’s modern data protection a thing of past. Rubrik’s market entry is also through VMware backups using vStorage APIs but with a better storage backend that can scale out.

Both Veeam and Rubrik have two high level tiers. The frontend tier connects to vSphere through VMware APIs. It discovers and streams virtual machine data. Then there is a backend storage tier where virtual machine data is stored.

For Veeam the front-end is a standalone backup server and its possible backup proxies. The proxies (thanks to VMware hot-add) enable limited level of scale-out for the frontend, but this approach leeches resources from production and increases complexity. The backend is one or more backup repositories. There is nothing special about the repository; it is a plain file system. Although Veeam claims to have deduplication built-in, it is perhaps the most primitive in the industry and works only across virtual machines from the same backup job.

Rubrik is a scale-out solution where the frontend and backend are fused together from users’ perspective. You buy Rubrik bricks where each brick consists of four nodes. These are the compute and storage components that cater to both frontend in streaming virtual machines from vSphere via NBD or SAN transport (kudos to Rubrik for ditching hot-add!) and backend, which is a cluster file system that spans nodes and bricks. Rubrik claims to have global deduplication across all its cluster file system namespace.

Historically, the real innovation from Veeam was the commercial success of powering on virtual machines directly from the backup storage. Veeam may list several other innovations (e.g. they may claim that they ‘invented’ agentless backups, but it was actually done by VMware in its APIs) in their belt but exporting VMs directly from backup is something every other vendor followed afterwards and hence kudos go to Veeam on that one. But this innovation may backfire and may help Veeam customers to transition to Rubrik seamlessly.

Veeam customers are easy targets for Rubrik for a few reasons.

  • One of the cornerstones of Veeam’s foundation is its dependency on vStorage APIs from VMware; it is not a differentiator because all VMware partners have access to those APIs. Unlike other backup vendors, Veeam didn’t focus on building application awareness and granular quiescence until late in the game
  • Veeam is popular in smaller IT shops and shadow projects within large IT environments. It is a handy backup tool, but it is not perceived as a critical piece in meeting regulatory specs and compliance needs. It had been marketed towards virtual machine administrators; hence higher-level buying centers do no have much visibility. That adversely affects Veeam’s ‘stickiness’ in an account.
  • Switching from one backup application to another had been a major undertaking historically. But that is not the case if customers want to switch from Veeam to something else. Earlier days, IT shops needed to standup both solutions until all the backup images from the old solution would hit the expiration dates. Or you have to develop strategies to migrate old backups into the new system, a costly affair. When the source is Veeam with 14 recovery points per VM by default, you could build workflows that spin up each VM backup in a sandbox and let the new solution back it up as if it is a production copy. (Rubrik may want to work on building a small migration tool for this)
  • Unlike Veeam that started stitching support for other hypervisors and physical systems afterwards, Rubrik has architected its platform to accommodate future needs. That design may intrigue customers when VMware customers are looking to diversify into other hypervisors and containers.

The fine print is that Rubrik is yet to be proven. If the actual product delivers on the promises, it may have antiquated Veeam. The latter may be become a good case study for business schools on not building a product that is dependent too much on someone else’s technology.

Thanks to #VFD5 TechFieldDay for sharing Rubrik’s story. You can watch it here: Rubrik Technology Deep Dive

Disclaimer: I work for Veritas/Symantec, opinions here are my own.

Getting to know the Network Block Device Transport in VMware vStroage APIs for Data Protection

When you backup a VMware vSphere virtual machine using vStorage APIs for Data Protection (VADP), one of the common ways to transmit data from VMware data store to backup server is through Network Block Device (NBD) transport. NBD is a Linux-like module that attaches to VMkernel and makes the snapshot of the virtual machine visible to backup server as if the snapshot is a block device on network. While NBD is quite popular and easy to implement, it is also the least understood transport mechanisms in VADP based backups.

NBD is based on VMware’s Network File Copy (NFC) protocol. NFC uses VMkernel port for network traffic. As you already know, VMkernel ports may also be used by other services like host management, vMotion, Fault Tolerance logging, vSphere Replication, NFS, iSCSI an so on. It is recommended to create specific VMkernel ports that attach to dedicated network adapters if you are using a bandwidth intensive service. For example, it is highly recommended to dedicate an adapter for Fault Tolerance logging.

Naturally, the first logical solution to drive high throughput from NBD backups would be to dedicate a bigger pipe for VADP NBD transport. Many vendors put this as the best practice but that alone won’t give you performance and scale.

Let me explain this using an example. Let us assume that you have a backup server streaming six virtual machines from an ESXi host using NBD transport sessions. The host and backup server are equipped with 10Gb adapters. In general a single 10Gb pipe can deliver around 600 MB/sec. So you would expect that each virtual machine would be backed up at around 100 MB/sec (600 MB/sec divided into 6 streams for each virtual machine), right? However, in reality each stream would have access to much lower share of bandwidth because VMkernel automatically caps each session for stability. Let me show you the actual results from a benchmark that we conducted where we measured performance as we increased the number of streams.

NBD Transport and number of backup streams
NBD Transport and number of backup streams

As you can see, by the time the number of streams has reached 4 (in other words, four virtual machines were simultaneously getting backed up), each stream is able to deliver just 55 MB/sec and the overall throughput is 220 MB/sec. This is nowhere near the available bandwidth of 600 MB/sec.

The reasoning behind this type of bandwidth throttling is straightforward. You don’t want VMkernel to be strained by serving this type of copy operations while it has better things to do. VMkernel’s primary function is to orchestrate VM processes. VMware engineering (VMware was also a partner in this benchmark, we submitted the full story as a paper for VMworld 2012) confirmed this behavior as normal.

This naturally puts NBD as a second-class citizen in backup transport world, doesn’t it? The good news is that there is a way to solve this problem! Instead of backing up too many virtual machines from the same host, just make your backup policy/job configuration to distribute the load over multiple hosts. Unfortunately, in environments with 100s of hosts and 1000s of virtual machines, it may be difficult to do it manually. Veritas NetBackup provides VMware Resource Limits as part of its Intelligent Policies for VMware backup where you can limit the number of jobs at VMware vSphere object levels, which is quite handy in this type of situations. For example, I ask customers to limit number of jobs per ESXi host to 4 or less using such intelligent policies and resource limit setting. Thus NetBackup can scale-out its throughput by tapping NBD connections from multiple hosts to keep its available pipe fully utilized while limiting the impact of NBD backups on production ESXi hosts.

Thus Veritas NetBackup moves NBD to first class status in protecting large environments even when the backend storage isn’t on Fiber Channel SAN. For example, NetBackup’s NBD has proven its scale in NetApp FlexPod, VCE VBLOCK, Nutanix and VMware EVO (VSAN). Customers could enjoy the simplicity of NBD and scale-out performance of NetBackup in these converged platforms.

References:

Taking VMware vSphere Storage APIs for Data Protection to the Limit: Pushing the Backup Performance Envelope; Rasheed, Winter et al. VMworld 2012

Full presentation on Pushing the Backup Performance Envelope

Checkmate Amazon! Google Nearline may be the Gmail of cold storage

April Fools’ Day 2004: Google announced Gmail, a free search based e-mail service with storage capacity of 1 gigabyte per user1. The capacity was unbelievably high when compared to other free Internet e-mail providers of that time. Hotmail and Yahoo! were giving 2-4MB per user. The days when inbox management used to be a daily chore are no more. The initial press release from the search giant differentiated it’s offering from others on three S’s: Search, Storage and Speed.

Google Nearline may be the Gmail of cold storage
Google Nearline may be the Gmail of cold storage

I wish Google waited a couple more weeks to announce Google Cloud Storage Nearline. It would have been fun to see it announced on April Fools’ Day. Nearline to a business today is how Gmail was to a consumer a decade ago.

Search: Google doesn’t talk about search in the context of Nearline. But nuts don’t fall that far away from the tree. Google wants your business to dump all your cold data in its cloud. It has the resources to adopt a loss leader strategy to help you keep data at lower cost in its cloud. Later you may be offered data mining and analytics as a service where Google would really shine and make money. The economies of scale will benefit both Google and you. Does anyone remember the search experience in Hotmail a decade ago?

Storage: Sorry, you aren’t getting the storage for free but it is cheap. It is a penny per month per gigabyte for data at rest. Instead of declaring a price war with Amazon’s Glacier, Google decided to match its pricing while differentiating itself from Glacier radically with simplicity and access. Unlike Amazon, the cold and standard storage from Google uses the same method of access thereby eliminating operational overhead or programming needs.

Speed: Amazon went old school with Glacier. It is designed look and feel like tape. It takes a few days for you to retrieve data, analogous to getting tapes shipped to you from an offsite location. This is where Google directly poked Amazon. Google is offering an average 3-second response time for data requests! Do you recall how Gmail JavaScript based coding made Hotmail to look like a turtle reloading entire web pages for each action?

Let’s come back to April Fools’ Day again. It happens to be the day after World Backup Day. The cold storage today is backup for most businesses. One of the strategic partnerships that Google made for Nearline launch is impeccable. According to Veritas/Symantec, NetBackup manages half of world’s enterprise data. It is not surprising why Google wanted Veritas to be in the Nearline bandwagon2. The best data pumps for business data is NetBackup and that relationship is a strategic win for Google right off the bat.

  1. Google Gets the Message, Launches Gmail
  2. Access, Agility, Availability: NetBackup and Google Cloud Storage Nearline

Dear Competitor “C”, all that snaps are not snapshots!

Benchmarking for truth
Benchmarking for truth

Common sense tells us that the creation of recovery points for applications from storage snapshots should be faster than the traditional methods of backing up the entire dataset. The storage solutions in the market have matured to provide space efficient recovery points through snapshots. A backup and recovery solution can make use of storage snapshots to create recovery points and provide additional values like information life cycle management and content indexing.

The faster you create a recovery point, the better the possibility of achieving aggressive recovery point objectives (RPOs). For example, if it takes 10 minutes to create a recovery point, the best possible RPO is also 10 minutes. Storage snapshots are great candidates for achieving such aggressive recovery points. This is the reason industry analysts vouch for storage snapshot integration in backup and recovery solutions.

However, a competitor to Symantec NetBackup (let us call this vendor as Competitor ‘C’) had been fooling industry analysts for a few years. Competitor ‘C’ positions itself as a ‘leader’ in storage snapshot integration. It received some brownie points for ticking the checkboxes in supporting multiple storage vendors. Symantec had commissioned an independent third party benchmarking company to validate the truth in this vendor’s capability. The result had been shocking.

Check out my official Symantec blog for the gory details.

Disclaimer: The blogs in MrVray.com are reflections of my own opinions.

The Big Hole in EMC Big Data backup story

It is one of the crucial roles for the marketing team in any organization to communicate the value of its products and services. It is not uncommon (pardon the double negative) for organizations to show the best side of its story while deliberately hiding the weaker aspects through fine prints. The left side of the picture below is the snapshot of breakfast cereal (General Mills’ Total) that came with my breakfast order in Sheraton while travelling on business.

EMC appears to have a Big Hole in its Big Data Backup
EMC appears to have a Big Hole in its Big Data Backup

Note that General Mills had claimed 100% of daily value of 11 vitamins and minerals but with an asterisk. The claim is true only if I consume 53g serving, but the box has only 33g!

Although I may have felt a bit taken back as a consumer, I enjoyed giving a bit of hard time to my General Mills friends and I moved on. This is a small transaction.

What if you were responsible for a transaction worth tens of thousands of dollars and were pitched a glass half-full story like this? It does happen. That General Mills cereal box is what came to my mind when I saw this blog from EMC on protecting Big Data (Teradata) workloads using EMC ‘Big Data backup solution’.

General Mills had the courtesy put the fine print that part of the vitamins and minerals are missing from its box. EMC’s blog didn’t really call out what was missing from its ‘box’ aka Data Domain device to protect Teradata workload using Teradata Data Stream Architecture. In fact it is missing the real brain of the solution: NetBackup!

First a little bit of history and some naked truth. Teradata had been working with NetBackup for over a decade to provide data protection for its workloads. In fact, Teradata sells the NetBackup Agent for Teradata for its customers. This agent pushes the data stream to NetBackup media servers. This is where the real workload aware intelligence (the real brain for this Big Data backup) is built. Once NetBackup media server receives the data stream it can store it on any supported storage: NetBackup Deduplication Pool, NetBackup Advanced Disk Pool, NetBackup OpenStorage Pool or even on a tape storage unit! When it comes to NetBackup OpenStorage Pool, it does not matter who the OpenStorage partner is; it can be EMC Data Domain, Quantum DXi,… The naked truth is that the backend devices are dumb storage devices from the view of NetBackup Agent for Teradata (the Teradata BAR component depicted in the blog).

EMC’s blog appears to have been designed to mislead the reader. It tends to imply that there is some sort of special sauce built natively into Data Domain (or Data Domain Boost) for Teradata BAR stream. The blog is trying to attach EMC to Big Data type workloads through marketing. May I say that the hole is quite big in EMC’s Big Data backup story!

I am speculating that EMC had been telling this story for a while in private engagements with clients. Note that the blog is simply displaying some of EMC’s slides that are marked ‘confidential’. The author forgot to remove it before publishing it. In closed meetings with joint customers of Teradata and NetBackup, a slide like this will create the illusion that Data Domain has something special for Teradata backup. Now the truth just leaked!

NetBackup Accelerator vs. Simpana DASH Full

I want to start this blog with a note.

I mean no disrespect to CommVault as a company or its engineers innovating its products. Being an engineer myself by trade, I do understand that innovations are triggered by market demands and there is always room for improvements in any product. This blog is entirely my own opinions.

As most of you guys reading this blog know, I also write for official Symantec blogs. I recently got an opportunity to take readers of Symantec Connect on a deep dive into one of the major features in NetBackup 7.6 for VMware vSphere and vCloud environments. It is primarily targeted for users of NetBackup who knows its nuts and bolts. A couple of employees from a CommVault read the blog. It is natural in competitive intelligence world to look for weak spots or things that can be selectively pointed out to show parity. It is part of their job and I respect it. However it appeared that they wanted to claim parity for Simpana with NetBackup Accelerator for VMware based on two statements (tweets, to be precise!). While asking to elaborate, the discussion went on a rat hole with statements made out of context and downright unprofessional. Hence here I go with an attempt to compare Simpana 10 with NetBackup 7.6 on the very topic discussed in official blog.

Claims to equate parity with NetBackup Accelerator for VMware

  1. (Not explicitly stated) Simpana supports CBT
  2. Simpana had ‘block detection’ for over a year
  3. Simpana does synthetics

The attempt here is to check all the boxes to claim parity while at times people do miss the big picture! At times they were equating apples to oranges. Hence I am going to attempt to clarify this as much as possible using Simpana language for the benefit those two employees.

Simpana supports CBT: Of course, every major vendor supports it. It is an innovation from VMware. The willingness to support a feature from vStorage APIs is important to protect VMware virtual machines.

What sets NetBackup 7.6 apart from Simpana 10 in this case is that Simpana’s implementation of CBT is limited to recovering an entire VM or individual files from the VM. If you have enterprise applications (e.g. Microsoft Exchange, Microsoft SQL Server etc.), you must stream data through an agent inside the guest to protect those applications and perform granular recovery. The value of CBT is to minimize data processing and movement load on production VMs while performing backups. A virtual machine’s operating system binaries and related files are typically static and CBT won’t add much value there. The real value comes from daily changes to disk blocks by applications! That means ZERO value in Simpana to protect enterprise applications with its implementation of vSphere CBT.

Simpana had block detection for over a year,  Simpana does synthetics: The employee is trying to add a check box for Simpana next to NetBackup’s capability to make use of Symantec V-Ray to detect deleted blocks. Nice try!

First and foremost, the block optimization technique described in my blog is present in NetBackup since 2007, with version 6.5.1 when Symantec announced support for VMware Virtual Infrastructure 3. Congratulations on trying to claim that Simpana had this capability after half a decade! But wait…. We are talking about apple and orange here.

This technique had been available for both full and incremental backup schedules. It works no matter where backups are going to, disk, deduplicated disk, tape or cloud. NetBackup’s block optimization happens closer to the data source. Thus it detects deleted blocks at the backup host so that the deleted blocks never appear in SAN or LAN traffic to the backup storage. That is optimization for processing-power, interconnect-bandwidth and storage!

CommVault employee was in a hurry to equate this to something Simpana caught up recently.  This is what I believe he is referring to. (I am asking him to tweet back if there is anything else).  Quoted from Simpana 10 online documentation.

DASH Full is a read optimized Synthetic Full operation which does not require traditional full backups to be performed. Once the first full backup is completed, changed blocks are protected during incremental or differential backups. A DASH Full will run in place of traditional full or synthetic full. This operation does not require movement of data. It will simply update indexing information and the deduplication database signifying that a full backup has been completed. This will significantly reduce the time it takes to perform full backups.

There are so many things I want to say about this, but I am trying to be concise here with bullet points.

  • What Simpana has here is an equivalent of NetBackup OpenStorage Optimized Synthetics that was introduced in NetBackup 6.5.4 (in 2009). While NetBackup still supports this capability, Symantec had taken this to the next level with NetBackup Accelerator. For the record, NetBackup Accelerator is also backed by Optimized Synthetics and hence the so-called ‘block detection’ is there in NetBackup since 2009.
  • The optimization I was talking about was the capability to detect deleted blocks from the CBT data stream while CommVault is touting about data movement within backup storage!
  • The DASH full requires incremental backups and separate schedules for synthetic backups. NetBackup Accelerator eliminates this operational inefficiency by synthesizing full image inline using the resources needed for an incremental backup.
  • If you are curious about how NetBackup Accelerator in general is different from Optimized Synthetics (or DASH Full), this blog would help.
  • Last but not the least, did I say that NetBackup Accelerator for VMware works with enterprise applications as well? Thus both CBT and deleted blocks detection (both relevant to applications that does the real work inside VM) adds real value for NetBackup Accelerator

Data Domain: The TiVo in data deduplication market

It is that time of the year when Christmas shopping is in full swing. If you rewind time by just six to eight years, TiVo’ing was a verb used widely and my team was not an exception. TiVo was a must have gadget in the house. My manager once said, “it is not easy to find a technical gadget that my wife would love, but TiVo was something she could operate and enjoy without being coached.”

TiVo was the gold standard of digital video recorders. Consumers were willing to pay a premium for the box upfront and sign up for monthly fees to get ‘Tivo Service”, the data service using which TiVo populated programming schedules and tasks. These costs are in addition what consumers may be paying for Cable or Satellite services.

Cable and satellite operators came with built-in DVRs in their set top boxes. Still, TiVo used to be the star. It had 4.36 million subscribers in 2006. The technology and usability for DVRs from competitors was so poor that consumers continued to pay a premium to enjoy hassle free experience in TiVo.

Fast forward a few years from its peak in 2006, TiVo stumbled into identity crisis. The competition came not just from Cable and Satellite providers who matched the simplicity of TiVo in their all-in-one set top offerings, but it also came indirectly from streaming services (NetFlix, Amazon, Hulu), cheaper purpose built set top boxes for streaming (Apple TV, Roku) and multi-purpose devices (Wii, PlayStation 3, Xbox). Now TiVo is struggling to stay relevant. It is no more asking for upfront premium for the box, if you commit to a 2-year subscription the box is yours. It partners with competitors to bring their services into TiVo. If there was a market for ‘Digital Video Recorders’, now it is squeezed by players from adjacent markets.

Holiday Offer from TiVo.com, seen on November 27, 2012
Holiday Offer from TiVo.com, seen on November 27, 2013

 

Today Deduplication Storage is such a market where Data Domain used to be the TiVo. It was a powerful but yet simple device that an IT administrator could manage without reading its manual. It moved out tape as main backup storage medium once it started to integrate with market leading backup applications, especially with Symantec’s NetBackup through OpenStorage. EMC had to pay a fortune (and fight with NetApp) to acquire this technology, but it paid off, as Data Domain was the only cash cow in EMC’s Backup and Recovery Services division.

Data Domain could ask for a premium as other players in the market couldn’t match the technology and simplicity. But now… the tide is changing…

Direct competitors are getting their act together. HP matched Data Domain’s scale and performance and added high availability on top of it. Symantec launched integrated all-in-one appliances with content aware deduplication built-in. Most backup software vendors have deduplication available as a feature. Even standard file systems (Symantec’s VxFS, Microsoft’s NTFS, Oracle’s ZFS) are now including deduplication. Now “data deduplication as a market” is being squeezed by competitors and adjacent players.  Customers are less and less likely pay a premium for deduplication, as it is becoming a commodity.

TiVo managed to kill VHS tapes, which was the primary recording device for television shows. EMC touted Data Domain as a tape killer in backup industry. While disk based solutions have indeed limited the value of tape (now it is used primarily for long term retention), Data Domain as a standalone premium deduplication storage device may be extinct even before tape gives up its last breath. Time will tell.

 

 

 

 

What’s up with VADP backups and VDDK on vSphere 5.1?

VMware vSphere 5.1 has been in the market for more than a few months now and the interest in the new capabilities is high. Because of this the market saw many backup vendors rush to announce support for vSphere 5.1 in their VADP (vStorage APIs for Data Protection) integration. Everything looked clean and shiny and new.

On November 21, Symantec made an interesting announcement1. In a nutshell, the statement was that support for vSphere 5.1 would be delayed in its NetBackup and Backup Exec products. It was because they discovered issues while testing the VADP 5.1 API for integration. The API in the current form may introduce risk in performing consistent backups and ensuring reliable restores. All vendors receive the same API, not all vendors perform the same level of testing.

In order to explain the intricacies, first we need to take a quick look at how a backup product is integrated with VMware vSphere. With each release of vSphere, VMware publishes a set of APIs known as VMware APIs for Data Protection or VADP. One of the key components of VADP is Virtual Disk Development kit aka VDDK. This is the component through which third party code receives authenticated access to vSphere Datastores and virtual machine disk files. VMware makes this component available to its technology partners. Partners (backup product vendors in this case) ship this along with their product that has calls to vStorage APIs.

With each version of vSphere, an equivalent version of VDDK is released. The VDDK is generally backward compatible to one or more earlier versions of vSphere. For example, VDDK 5.1 supports2 vSphere 5.1, 5.0 and 4.1. VDDK 5.0 supports3 vSphere 5.0, 4.1, 4.0 and VI 3.5. Since the updated VDDK is required to understand the modified data structures in a new version of vSphere, lower versions of VDDK are in general not supported for accessing a higher version of vSphere. For example, VMware historically and currently (as of today) does not support the use of VDDK 5.0 to access datastores in vSphere 5.1.  VMware documents supported versions of vSphere for each of its VDDK versions in release notes.

The key to remember is the statement in bold face above. VMware does not support any violated combinations because of the risks and uncertainties. The partners are expected to ship the correct version of VDDK when they announce the availability of support for a given vSphere release.

What Symantec announced and VMware confirmed4 is that VDDK 5.1 has issues and hence the support for vSphere 5.1 in its products will be delayed. This makes sense since VDDK 5.1 is the only version currently allowed to access vSphere 5.1. The face-saving reactions from other vendors to this announcement revealed some of the dirty games and ugly truths to come out in the area of VADP/VDDK integration.

 

  1. Vendors were claiming support for vSphere 5.1 but still shipping VDDK 5.0 with their products. This is currently not supported by VMware because of the uncertainties.  This may change but at the time vendors claiming support, they were taking risks that typically are not acceptable in field of data protection business.
  2. Vendors were mucking with API calls and silently killing hung processes. That may work for an isolated or random hang. But will not work when there are repeatable hang situations like those observed in VDDK 5.1. Plus, there are performance and reliability concerns in abruptly ending sessions with vSphere.
  3. Most vendors weren’t testing all the edge cases and never realized the problems in VDDK 5.1, thus prematurely announcing support for 5.1

 

If your backup vendor currently supports vSphere 5.1, be sure to ask what their situation is.

Sources and references:

1. Quality wins every time: vSphere 5.1 support update, Symantec official blog.

2. VDDK 5.1 Release Notes, VMware Support resources

3. VDDK 5.0 Release Notes, VMware Support resources

4. Third-party backup software using VDDK 5.1 may encounter backup/restore failures, VMware Support KB

Dear EMC Avamar, please stop leeching from enterprise vSphere environments

VMware introduced vStorage APIs for Data Protection (VADP) so that backup products can do centralized, efficient, off-host LAN free backup of vSphere virtual machines.

In the physical world, most systems have plenty of resources, often underutilized. Running backup agent in such a system wasn’t a primary concern for most workloads. The era of virtualization changed things drastically. Server consolidation via virtualization allowed organizations to get the most out of their hardware investment. That means backup agents do not have the luxury to simply take up resources from production workloads anymore as the underlying ESXi infrastructure is optimized and right-sized to get line of business applications running smoothly.

VMware solved the backup agent problem from the early days of ESX/ESXi hosts. The SAN transport method for virtual machine backup was born during the old VCB (VMware Consolidated Backup) days and further enhanced in VADP (vStorage APIs for Data Protection). The idea is simple. Let the snapshots of virtual machine be presented to a workhorse backup host and allow that system do the heavy lifting of processing and moving data to backup storage. The CPU, memory and I/O resources on ESX/ESXi hosts are not used during backups. Thus the production virtual machines are not starved for hypervisor resources during backups.

For non-SAN environments like NFS based datastores, the same dedicated host can use Network Block Device (NBD) transport to stream data through management network. Although it is not as efficient as SAN transport, it still offloaded most of the backup processing to the dedicated physical host.

Dedicating one or more workhorse backup systems to do backups was not practical for small business environments and remote offices. To accommodate that business need, VMware allowed virtual machines to act as backup proxy hosts for smaller deployments. This is how hotadd transport was introduced.

Thus your backup strategy is to use a dedicated physical workhorse backup system to offload all or part of backup processing using SAN or NBD transports. For really small environments, a virtual machine with NBD or hotadd transport would suffice.

Somehow EMC missed this memo. Ironically, EMC had been the proponent of running Avamar agent inside the guest instead of adopting VMware’s VADP. The argument was that the source side deduplication at Avamar agent minimizes the amount of data to be moved across the wire. While that is indeed true, EMC conveniently forgot to mention that CPU intensive deduplication within the backup agent would indeed leech ESXi resources away from production workloads!

Then EMC conceded and announced VADP support. But the saga continues. What EMC had provided is hotadd support for VADP. That means you allocate multiple proxy virtual machines even in the case of enterprise vSphere environments. Some of the best practice documents for Avamar suggest deploying a backup proxy host for every 20 virtual machines. Typical vSphere environment in an enterprise would have 1000 to 3000 virtual machines. That translates to 50 to 150 proxy hosts! These systems are literally the leach worms in vSphere environment draining resources that belong to production applications.

The giant tower of energy consuming nodes in Avamar grid is not even lifting a finger in processing backups! It is merely a storage system. The real workhorses are ESXi hosts giving in CPU, memory and I/O resources to Avamar proxy hosts to generate and deduplicate backup stream.

The story does not change even if you replace Avamar Datastore with a Data Domain device. In that case, the DD Boost agent running on Avamar proxy hosts are draining resources from ESXi to reduce data at source and send deduplicated data to Data Domain system.

EMC BRS should seriously look at the way Avamar proxy hosts with or without DD Boost are leaching resources from precious production workloads. The method used by Avamar is recommended only for SMB and remote office environments. Take the hint from VMware engineering as to why Avamar technology was borrowed to provide a solution for SMB customers in VMware Data Protection (VDP) product. You can’t chop a tree with a penknife!

The best example for effectively using VADP for enterprise vSphere is NetBackup 5220. EMC BRS could learn a lesson or two from how Symantec integrates with VMware in a much better way. This appliance is a complete backup system with intelligent deduplication and VADP support built right in for VMware backups.  This appliance does the heavy lifting so that production workloads are unaffected by backups.

How about recovery? For thick provisioned disks SAN transport is indeed the fastest. For thin provisioned disks, NBD performs much better. The good news on Symantec NetBackup 5220 is that the user could control the transport method for restores as well. You might have done the backup using SAN transport, however you can do the restore using NBD if you are restoring thin provisioned virtual machines. For Avamar, hot-add is the end-all for all approaches. NBD on a virtual proxy isn’t useful, hence using that is a moot point when the product offers just virtual machine proxy for VADP.

The question is…

Dear EMC Avamar, when will you offer an enterprise grade VADP based backup for your customers? They deserve enterprise grade protection for the investment they had done for large Avamar  Datastores and Data Domain devices.